Rapamycin extends life span of Rb1+/− mice by inhibiting neuroendocrine tumors
نویسندگان
چکیده
Chronic treatment of mice with an enterically released formulation of rapamycin (eRapa) extends median and maximum life span, partly by attenuating cancer. The mechanistic basis of this response is not known. To gain a better understanding of thesein vivo effects, we used a defined preclinical model of neuroendocrine cancer, Rb1+/- mice. Previous results showed that diet restriction (DR) had minimal or no effect on the lifespan of Rb1+/- mice, suggesting that the beneficial response to DR is dependent on pRb1. Since long-term eRapa treatment may at least partially mimic chronic DR in lifespan extension, we predicted that it would have a minimal effect in Rb1+/- mice. Beginning at 9 weeks of age until death, we fed Rb1+/- mice a diet without or with eRapa at 14 mg/kg food, which results in an approximate dose of 2.24 mg/kg body weight per day, and yielded rapamycin blood levels of about 4 ng/ml. Surprisingly, we found that eRapa dramatically extended life span of both female and male Rb1+/- mice, and slowed the appearance and growth of pituitary and decreased the incidence of thyroid tumors commonly observed in these mice. In this model, eRapa appears to act differently than DR, suggesting diverse mechanisms of action on survival and anti-tumor effects. In particular the beneficial effects of rapamycin did not depend on the dose of Rb1.
منابع مشابه
Developmental trends in targeted radionuclide therapy of neuroendocrine tumors
Neuroendocrine tumors (NETs) constitute a heterogeneous group of neoplasms including carcinoids, pancreatic neuroendocrine tumors, pituitary tumors, medullary thyroid carcinoma and phaeochromocytomas. The symptoms and the outcome of NETs differ considerably between patients depending on several factors. By labelling tracers with a radioisotope, the tracer acts as a ...
متن کاملYoung and old genetically heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive.
Rapamycin, an inhibitor of the mechanistic target of rapamycin (mTOR) signaling pathway, extends the life span of yeast, worms, flies, and mice. Interventions that promote longevity are often correlated with increased insulin sensitivity, and it therefore is surprising that chronic rapamycin treatment of mice, rats, and humans is associated with insulin resistance (J Am Soc Nephrol., 19, 2008, ...
متن کاملRapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice.
Rapamycin was administered in food to genetically heterogeneous mice from the age of 9 months and produced significant increases in life span, including maximum life span, at each of three test sites. Median survival was extended by an average of 10% in males and 18% in females. Rapamycin attenuated age-associated decline in spontaneous activity in males but not in females. Causes of death were...
متن کاملRapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity.
Rapamycin, an inhibitor of mechanistic target of rapamycin complex 1 (mTORC1), extends the life spans of yeast, flies, and mice. Calorie restriction, which increases life span and insulin sensitivity, is proposed to function by inhibition of mTORC1, yet paradoxically, chronic administration of rapamycin substantially impairs glucose tolerance and insulin action. We demonstrate that rapamycin di...
متن کاملRapamycin extends life- and health span because it slows aging
Making headlines, a thought-provocative paper by Neff, Ehninger and coworkers claims that rapamycin extends life span but has limited effects on aging. How is that possibly possible? And what is aging if not an increase of the probability of death with age. I discuss that the JCI paper actually shows that rapamycin slows aging and also extends lifespan regardless of its direct anti-cancer activ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2013